

Zebra Mussel Control Study

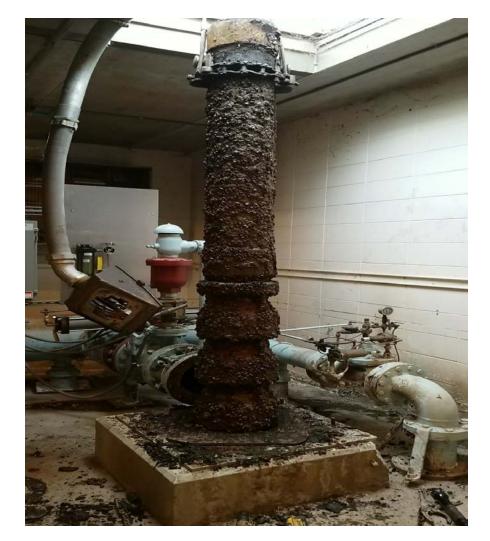
10 October 2018

Jim Winger Project Manager

- Zebra Mussel Overview & Limits of Infestation
- Zebra Mussel Control Strategies
- Overview of Viable Zebra Mussel Control Strategies
- Recommendations & Next Steps (Path Forward)

Zebra Mussel Overview & Limits of Infestation

Zebra Mussel Overview


- Zebra mussels originated from Russia & were introduced to the Great Lakes in the 1980s
- Optimum conditions for zebra mussel growth:
 - Water temperature above 60°F
 - Velocity less than 7 fps
 - Turbidity < 50 NTU
- Spawning season in Lewis & Clark Reservoir estimated to be between May and October

Zebra Mussel Infestation at Intake No. 1

• Zebra mussels observed during pump repair work in April, 2018

• The degree of infestation on the screens, Intake Pipelines and Raw Water Pipeline is unknown

Intake No. 1 – Site Plan & Design Parameters

INTAKE/PUMPING STATION NO. 1

DESCRIPTION	INTAKE NO. 1			
Intake Screen				
Intake Type	T-Screen			
Velocity through Intake Screen	< 0.5 fps			
Intake Pipeline				
Number of Intake Pipes	2			
Diameter	20-inch			
Length	Approx. 300 ft.			
Velocity in Intake Pipeline	3.7 fps			
Intake Pumps				
Firm / Total capacity at normal reservoir level	5.25 / 6.75 MGD			
Raw Water Pipeline				
Number of Pipelines	1			
Diameter	18-inches			
Length	Approx. 9,260 ft.			
Velocity	5.9 fps			

Intake No. 2 – Site Plan & Design Parameters

INTAKE/PUMPING STATION NO. 2

DESCRIPTION	INTAKE NO. 2				
Intake Screen					
Intake Type	T-Screen				
Velocity through Intake Screen	< 0.5 fps				
Intake Pipeline					
Number of Intake Pipes	2				
Diameter	24-inch				
Length	Approx. 560 ft.				
Velocity in Intake Pipeline	4.2 fps				
Intake Pumps					
Firm / Total capacity at normal reservoir level	8.6 / 10.2 MGD				
Raw Water Pipeline					
Number of Pipelines	1				
Diameter	24-inch				
Length	Approx. 9,300 ft.				
Velocity	5.0 fps				

R/

Zebra Mussel Control Strategies

Zebra Mussel Control Strategies

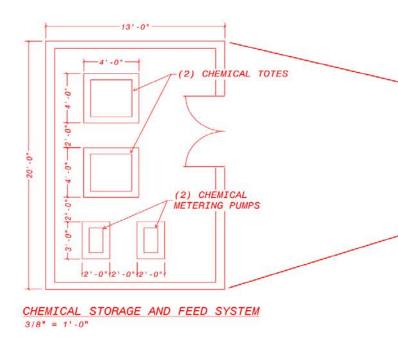
• Chemical Treatment

- Ozone
- Chlorine Dioxide
- Hydrogen Peroxide
- Polymer
- Chloramines (Chlorine + Ammonia)
- Sodium Hypochlorite
- Sodium Permanganate
- Copper-based biocide
- Copper Ionization
- UV Reactors

Viable Zebra Mussel Control Strategies

Intake Pipeline, Pump Wetwell & Raw Water Pipeline

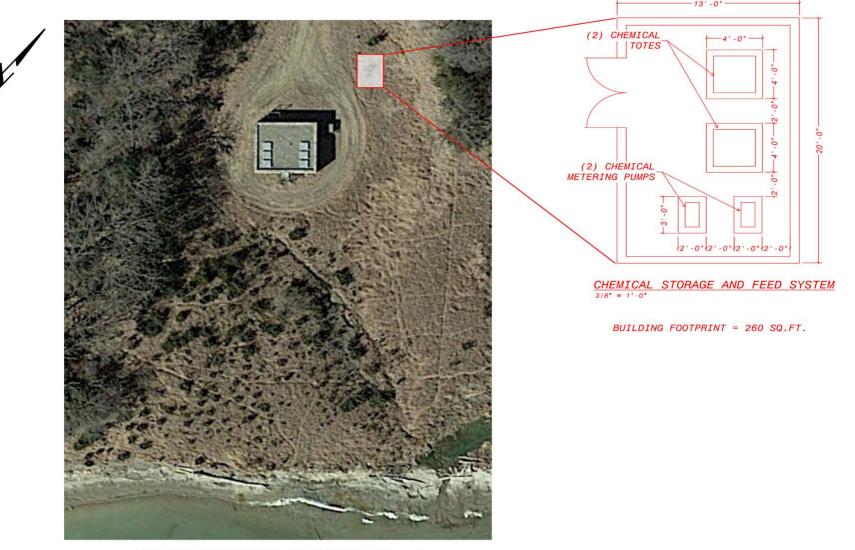
- Alternative 1: Sodium Permanganate
- Alternative 2: Copper-based Biocide
- Alternative 3: Copper Ionization


Intake Screen

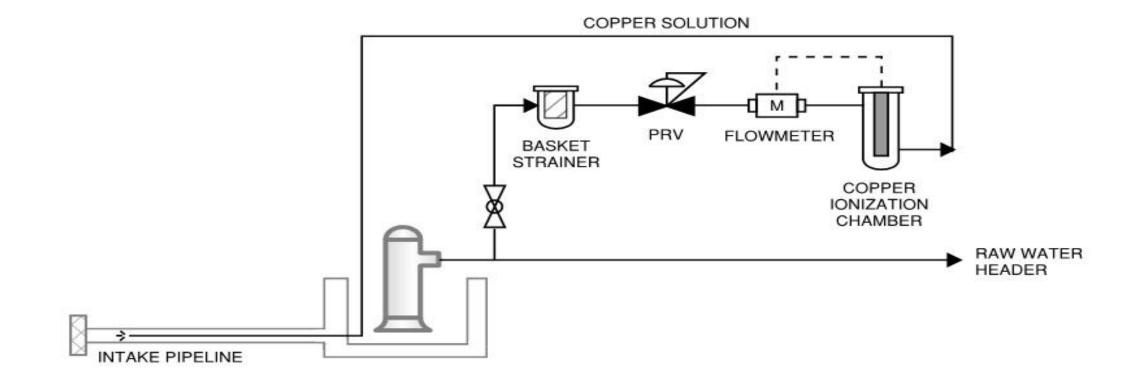
- Alternative A: Periodic Inspection & Physical Cleaning
- Alternative B: Replace Intake Screens with mussel-resistant material
- Alternative C: Coat Existing Intake Screens with mussel-resistant
 material

Overview of Viable Zebra Mussel Control Strategies

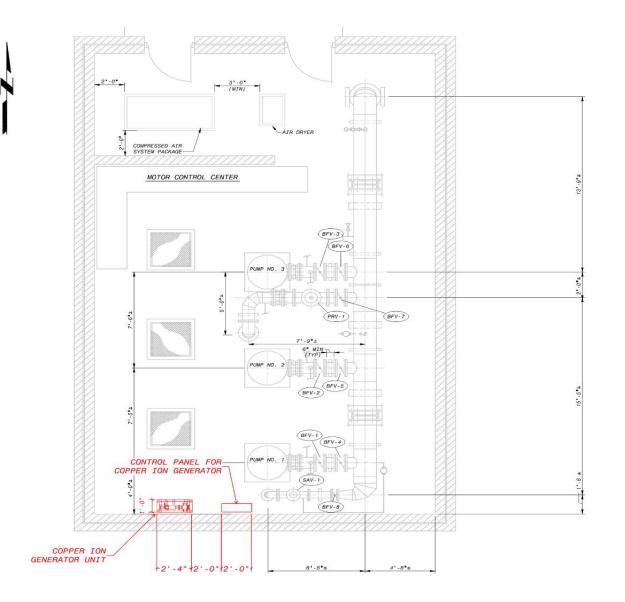
Alternative Nos. 1 & 2 – Intake No. 1 Site Plan & Facility Layout (Sodium Permanganate or Copper-based Biocide)



BUILDING FOOTPRINT = 260 SQ.FT.


INTAKE/PUMPING STATION NO. 1

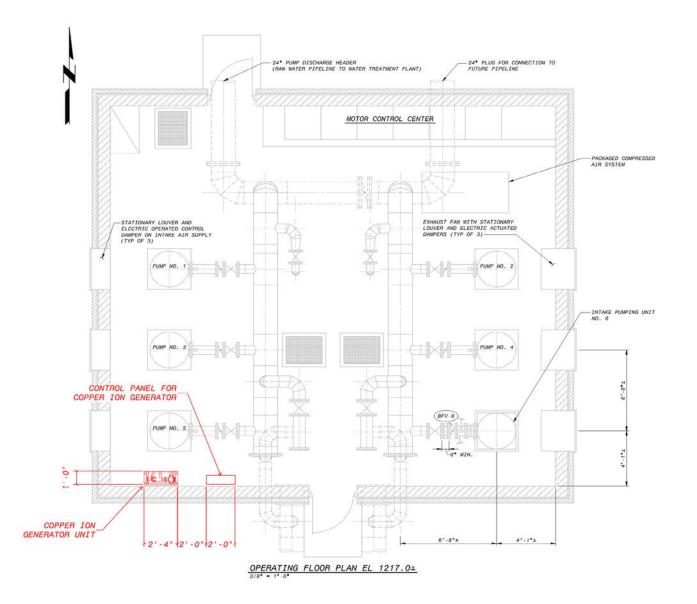
Alternative Nos. 1 & 2 – Intake No. 2 Site Plan & Facility Layout (Sodium Permanganate or Copper-based Biocide)


INTAKE/PUMPING STATION NO. 2

Alternative No. 3 – Copper Ionization

One 10 MGD unit installed at each intake pump station.

Alternative No. 3: Intake No. 1 – Copper Ion Facility Layout



20 MGD copper ion generator installed in Lawrence, KS

R,

Alternative No. 3: Intake No. 2 – Copper Ion Facility Layout

20 MGD copper ion generator installed in Lawrence, KS

R,

Comparison of Viable Alternatives

ALTERNATIVE	ALTERNATIVE 1 – SODIUM PERMANGANATE	ALTERNATIVE 2 – COPPER-BASED BIOCIDE	ALTERNATIVE 3 – COPPER ION GENERATOR
Description	 Chemical storage & feed system housed in a new building 	 Chemical storage & feed system housed in a new building 	 Copper ion generator located inside existing Intake Pump Station Nos. 1 and 2.
Advantages	Simple to operateDoes not form DBPs	Simple to operateDoes not form DBPs	 Compact footprint Lowest capital and life cycle cost Does not require chemical deliveries to site Does not form DBPs
Disadvantages	 Difficulty delivering chemicals to site Higher capital and life cycle cost Potential for pink water if overdosed 	Difficulty delivering chemicals to siteHigher capital and life cycle cost	
Capital Cost	\$1,265,000	\$1,265,000	\$465,000
Annual O&M Cost	\$28,000	\$26,000	\$7,000
Total Life Cycle Cost	\$2,310,000	\$2,255,000	\$760,000

Zebra Mussel Control Strategies to Protect Intake Screens

Comparison of Alternatives to Protect Intake Screens

ALTERNATIVE	ALTERNATIVE 1 – APPLICATION OF COATING SYSTEM	ALTERNATIVE 2 – REPLACE EXISTING INTAKE SCREENS	ALTERNATIVE 3 – PERIODIC INSPECTION & CLEANING
Description	 Coat existing intake screens with zebra mussel resistant materials 	 Replace existing intake screen with new copper-nickel alloy screen 	 Bi-annual inspection and physical cleaning performed by divers
Advantages	 Permanent protection of intake screen from zebra mussel infestation Requires coating replacement every 10-15 years 	 Permanent protection of intake screen from zebra mussel infestation No annual O&M cost 	 Does not require an initial capital investment
Disadvantages	 Requires initial capital investment Requires removal of existing screens Cost for recoating screens 	 Requires initial capital investment Requires removal of existing screens 	 High annual O&M cost Potential damage to intake screen during cleaning activities
Capital Cost	\$300,000	\$480,000	N/A
Annual O&M Cost	\$300,000 every 10 years	N/A	\$30,000
Total Life Cycle Cost	\$1,300,000	\$480,0000	\$820,000

Recommendations & Next Steps

Recommendations & Next Steps

- Step 1: Submit draft report to DENR and solicit feedback.
- Step 2: Perform inspection of intake & raw water pipelines using ROV. Perform inspection of intake screens w/ diver.
- Step 3: Identify point of chemical application & need for screen replacement based on inspection results.
- Step 4: Implement copper ionization system to protect infrastructure identified in Step 3.
- Step 5: Replace existing screens with copper-nickel alloy screens when zebra mussel infestation is observed.

BUILDING A WORLD OF DIFFERENCE

Jim Winger

+1 913-458-3484 wingerjg@bv.com

BUILDING A WORLD OF DIFFERENCE®

BLACK & VEATCH

10 October 2018